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Wavelength-scanning digital interference holography for
optical section imaging
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We propose and experimentally demonstrate a simple digital holographic method that allows reconstruction of
three-dimensional object images with a narrow depth of focus or axial resolution. A number of holograms are
optically generated by use of different wavelengths spaced at regular intervals. The holograms are recorded
on a digital camera and reconstructed numerically. Multiwavelength interference of the holograms results in
images of the contour plane whose thickness can be made arbitrarily narrow. Objects at different distances
from the hologram plane are imaged clearly and independently, with complete suppression of the out-of-
focus images. The technique is available only in digital holography and should have useful applications in
holographic microscopy.  1999 Optical Society of America
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By recording not only the intensity but also the phase
information of a light wave arriving at a record-
ing medium, holography allows three-dimensional vi-
sualization of real objects and gives rise to a host
of metrological techniques and optical information
processing applications.1 With the advance of com-
puter and electronic imaging technology, it is now
very practical and often advantageous to replace por-
tions of holographic procedures with electronic pro-
cesses. Thus holographic interference patterns can
be calculated from mathematically defined models
of a three-dimensional scene.2,3 These patterns are
referred to as computer-generated holograms, which
are then recreated optically by laser illumination of
the hard copy of a computer-generated hologram.
Complimentarily, in digital or computer-reconstructed
holograms the optical interference pattern between
the object and the reference waves is recorded by an
electronic camera and stored in a computer, and the
holographic image is recreated on the computer by
numerical calculation.4 In either computer-generated
or computer-reconstructed holograms, the numerical
calculation basically imitates the optical diffraction
process as the light wave propagates from the object to
the hologram and to the image plane, by use of Fresnel
diffraction theory or Huygens wavelet theory.5 The
computational load can be minimized by segmentation
of holograms and by horizontal-only parallax.6,7 The
phase information of the light wave is available directly
from the numerical reconstruction and greatly simpli-
f ies interferometric deformation analysis.8 – 10

In this Letter we propose a simple digital holo-
graphic technique that allows reconstruction of
three-dimensional object images with a narrow axial
resolution. As is well known, interference of two
holograms recorded at two different wavelengths
results in a contour interferogram, with the axial
distance between the contour planes inversely propor-
tional to the difference in wavelengths. In computer-
reconstructed holography, unlike in conventional
holography, the reconstruction of each hologram is
done with the corresponding wavelength that was
actually used in the recording process. Therefore
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it is possible to extend the process to recording and
reconstruction of many holograms without introducing
any wavelength mismatch. If a number of regularly
spaced wavelengths are used for recording and re-
construction, then the peaks of the cosine squared
intensity variation of two-wavelength interference
become sharper and narrower, as when a number of
cosines with regularly spaced frequencies are added.
The present work has been motivated by a practical
problem in microscopy, in which the axial magnifi-
cation is proportional to the square of the transverse
magnif ication. Even at moderate magnification,
it is diff icult to bring the entire microscopic object
into focus, whereas the out-of-focus portions of the
object image contribute to blurring and noise of the
focal-plane image. Confocal scanning microscopy
addresses this problem very successfully,11 although
the requirements of stability and precision of lengthy
mechanical scanning can be quite signif icant. A
hologram, of course, has perceived depth and axial
resolution, but determination of axial location in
particle analysis, for example, depends only on the
focusing of the image as the depth is varied,12,13 and
out-of-focus blurring presents the same problem as
in conventional microscopy. Several authors have
proposed holographic depth resolution by use of time-
gated interference of short pulses or phase-sensitive
detection of a time-modulated signal.14 The technique
proposed here involves no mechanical motion, and
wavelength scanning and multiple exposure can be
electronically automated for speed and stability.

To outline the proposed technique we start by stat-
ing that one of the diffracted fields of a hologram,
Ei, recreates an exact replica of the object wave, Eo.
So we consider an object point P located at �xo, yo, zo�
that emits a Huygens spherical wavelet proportional
to A�P�exp�ikrP � measured at an arbitrary point Q lo-
cated at �x, y, z�, where rP � jrP 2 rQ j is the dis-
tance between P and Q, and we neglect the 1�r
dependence of the amplitude. The wave propagates in
the general z direction. The factor A�P� represents the
field amplitude and phase at the object point. For an
extended object, the field at Q is proportional to the
 1999 Optical Society of America
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above-described wavelet field integrated over all the
points on the object:

Ek�Q� �
Z
P

d3rP A�P�exp�ikrP � . (1)

The factor exp�ikrP � represents the propagation and
diffraction of the object wave. Now suppose that a
number of copies of the electric field are generated
by variation of the wave numbers k (or wavelengths
l), with all other conditions of object and illumination
remaining the same. Then the resultant field at Q is

E�Q� �
X
k

Z
P

d3rP A�P�exp�ikrP �

�
Z
P

d3rP A�P�d�rP 2 rQ�

� A�Q� . (2)

That is, for a large enough number of wave numbers
k, the resultant field is proportional to the field at the
object and is nonzero only at object points. In practice,
if one uses a finite number N of wavelengths at
regular intervals of Dl (with corresponding intervals
of frequencies Df ), then the object image A�P� repeats
itself at axial distances L � l2�Dl � c�Df , with axial
resolution d � L�N . By use of appropriate values
of Dl and N , the contour-plane distance L can be
matched to the axial extent of the object, and d, to the
desired level of axial resolution. In fact, relation (2)
can also be interpreted as a Fourier transform in rP and
is the basis of the method described as laser radar.15

A proof-of-principle experiment was performed by
use of the apparatus depicted in Fig. 1. A ring dye
laser (RDL) provides a 595.0-nm laser field of �50-mW
power, with a linewidth of �50 MHz. The laser
beam is expanded with a microscope objective (MO) to
20-mm diameter (lens L1) and divided into three parts
by beam splitters (BS’s). One of these beams provides
the planar reference beam (REF), and the other two
constitute the object beam. The object consists of two
transparent targets attached to the backref lecting
mirrors (M’s) in separate optical arms, allowing us to
avoid obstruction of one object by the other in the same
optical path. One target, OBJ1, is a checkerboard
pattern with a 2.5-mm grid size, and the other target,
OBJ2, is a transparent letter A that fits inside an
opaque square with 13-mm sides. The object and
the reference beams are combined in a Michelson
interferometer arrangement and sent to a translucent
Mylar screen, S. The object distances to the screen
are approximately 149 and 167 cm for OBJ1 and OBJ2,
respectively. The interference pattern on the screen
is imaged by a digital camera (DC; Kodak DC 120)
through another lens, L2, for adjustment of focus and
magnif ication. The camera has 960 3 1280 pixels,
with a 10 mm 3 10 mm pixel size. All the calcula-
tions presented here use 256 3 256 pixel images of
screen area 13 mm 3 13 mm, so that the effective
pixel resolution on the screen is 51 mm. We set
the corresponding minimum distance for the object
as 1.1 m to accommodate interference between rays
emanating from the two ends of a 13-mm object. For
each hologram we also image the reference and the
object beams separately so that these images can be
subtracted before reconstruction, and the resulting
images do not contain zero-order terms. We do not
try to eliminate the conjugate image. The process is
repeated for as many as 11 laser frequencies spaced
1.0 GHz apart, so the axial period L of the resultant
hologram images is 30 cm and the axial resolution
d is 3.0 cm. For reconstruction of images we use a
MatLab program that encodes the Fresnel diffraction,
which is equivalent to relation (1) with appropriate
approximation

E�x, y; z� � exp
∑
ik
2z

�x2 1 y2�
∏

3 F �E0�x0,y0�S�x0, y0; z�� �kx,ky � , (3)

where

S�x,y; z� � 2
ik
z

exp
∑
ikz 1

ik
2z

�x2 1 y2�
∏
, (4)

kx � kx�z, ky � ky�z, and F � f � �k� stands for the
Fourier transform of f with respect to the variable k.

Figure 2(a) shows the images of the interference
hologram (H) between the reference (R) and the object
(O) beams, and Fig. 2(b) shows the subtracted image,
E � H 2 R 2 O. The holographic image in Fig. 2(c)
of a single object, and a single wavelength, is recon-
structed at zi � 149 cm and shows the typical resolu-
tion and quality of the reconstructed images (zo and zi
are the object and image distances, respectively, mea-
sured from the screen.) The remaining fringe pattern
inside the squares is due to the out-of-focus twin image.

Fig. 1. Apparatus for wavelength-scanning digital inter-
ference holography. See text for details.

Fig. 2. Reconstruction of the image of a single object
(OBJ1) by use of a single wavelength: (a) interference
between reference and object, (b) intensity pattern of
(a) minus those of the reference and object beams,
(c) numerically reconstructed image at zi � zo � 149 cm.
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Fig. 3. Reconstruction of the images of two objects (OBJ1
and OBJ2) by use of (a) a single wavelength at zi � zo2 �
165 cm (the image at 149 cm is quite indistinguishable from
this image), (b) 11 holograms at zi � zo1 � 149 cm, or (c) 11
holograms at zi � zo2 � 165 cm.

Fig. 4. Reconstructed image patterns as functions of
image distance. The horizontal axis is zi (in centimeters)
and the vertical axis is a slice of the reconstructed image (in
millimeters) along the dotted line in Fig. 3(a): (a) single
wavelength or frequency; (b) combination of two holograms
at relative frequencies, 0.0 and 1.0 GHz; (c) three relative
frequencies, 0.0, 1.0, and 2.0 GHz; (d) 11 relative frequen-
cies, 0.0, 1.0, 2.0, . . . , 10.0 GHz.

Figure 3(a) shows the reconstructed image with both
objects OBJ1 and OBJ2 illuminated, with a single
wavelength, at zi � 165 cm. The image is essentially
indistinguishable if zi � 149 cm, although it is possible
to discern slight differences in the sharpness of focus.
On the other hand, if we add holograms of 11 wave-
lengths at 1.0-GHz intervals, the results are as shown
in Figs. 3(b) and 3(c). Each of the images contains
only OBJ1 or OBJ2, and the out-of-focus images are
clearly suppressed. The axial resolution determined
by focal sharpness alone is at least 20–30 cm, as can
be seen from Fig. 4(a), in which the vertical axis is a
slice of the reconstructed image along the dotted ver-
tical line in Fig. 3(a) and the horizontal axis is the
image distance zi from 140 to 190 cm. In Fig. 4(b)
two holograms with frequency separation of 1.0 GHz
are combined, and the figure shows the expected co-
sine squared modulation, with a period of 30 cm. In
Fig. 4(c), three relative frequencies of 0.0, 1.0, and
2.0 GHz are combined, and the narrowing of the inter-
ference maxima is evident. Also note that the images
of OBJ1 and OBJ2 focus at different zi locations: The
three bright areas near zi � 150 cm (and also at
180 cm) are the three bright squares of OBJ1’s checker-
board, and the bright patch near y � 23.0 mm, zi �
165 cm corresponds to the lower left hand of OBJ2’s
letter A. Carrying the process further, 11 holograms
with frequencies 0.0, 1.0, 2.0, . . . , 10.0 GHz are com-
bined in Fig. 4(d), which results in axial resolution of
�3 cm, as expected.

The experiment thus demonstrates the feasibility
of using multiwavelength interference of computer-
reconstructed holograms for high axial resolution of
three-dimensional images. The apparatus is very
simple and amenable to electronic automation without
mechanical moving parts. Even with the less-than-
optimal laser and imaging systems employed here,
the theoretically predicted axial resolution is easily
achieved. The main sources of imperfection in Fig. 4,
for example, were the mode hop and drift of the
nonstabilized laser frequency.

The author thanks N. Djeu for the use of the ring dye
laser and for useful discussions; his e-mail address is
myungkim@chuma.cas.usf.edu.
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